
D-A165 323 DEFINING NETRICS FOR ADA SOFTIJARE DEVELOPMENT PROJECTS 1/1
(U) MARYLAND UNIV COLLEGE PARK S 8 SHEPPARD ET AL
MAR 83 N88814-82-K-8225

UNCLASSIFIED F/G 9/2 NL

EEEEEEEE

128 2.5

1 U 2 jj 2 .2

1.25~ 1.8

M(1&QWY REOtlIJON I [SI CHARI

Z-4

DEFINING METRICS FOR ADA SOFTWARE DEVELOPMENT PROJECTS

Sylvia B. Sheppard, John W. Bailey & Elizabeth Kruesi x

General Electric Company

N ~Arlington, Virginia -

Cq)
The Ada language is not just another prograimilng We chose a realistically large and complex soft-J

It' lagae Ada will be installed with a pre- ware development project for study. It involved
dfnd environent that will provide pro- re-implementation of a portion of a working

graimmers with a standard set of tools to perform ground support system for a comunication satel-

their jobs. In addition to tools requisite for lite.- The original system was developed by
any environment (i. e., a compiler, an editor, General Electric and consisted of approximately

et.,tools may be provided for data callec- 100,000 lines of FORTRAN and assembly code. A
ton. These data will provide feedback to the subset of the original system was selected for

software development process and will predict is executable apart from the larger system. It
the operational characteristics of the systemi includes functions to recei ve an operator's

~(under development. In the past, instances of inputs, to perform complex computations and to
data collection efforts on software projects display output graphically. Also included are
have been erratic. However, with the commonal- several concurrent processes to monitor and
ity that will now occur for Ada enviroments, display telemetry data from~ the satellite.
there is an opportunity to introduce systematic
methods and procedures for measurement on a wide The project began in February 1982 with a
scale. Thus there is a need for the selection of month of formal training in Ada. FollIowi ng
metrics that are relevant and useful in an Ada this, the lead programmer and back-up progranmmer
environment, produced a requirements document describing the

subsystem. The design was developed in an
Different metrics are useful for different Ada-like program design language. Coding began
purposes and at different times in the life in August and was completed in November, 1982.
cycle of a software development project. For Approximately 10,000 lines of Ada source code,
example, project managers need measures to pre- including commen~ts, were produced. Some
dict resources and schedules, to track costs and compilation has been done using the NYU Ada/Ed
to locate potential problem areas. These needs interpreter. Testing will b)e done as soon as a
differ from those of a customer or end user who full Ada compiler is available.
would like some measure of the reliability of
the system and proof of tihe thoroughness of the Our approach to measurement for this project has
testing that has been done. Still different are been systematic and thorough. We began by
the needs of a programmner who would benefit from defining goals for our data-collection effort.
feedback about the complexity of a just-compiled The goals fell naturally into three categories:
module. The problem of defining a unified set those relating to software development projects
of m'etrics is not simple and straightforward. in general , those rel ati ng to the use of Ada as
We must consider the needs of a variety of a design and implementation language, and those
people who come into contact with a system over relating to metrics for the APSE, the Ada
a long period of tieProgrammning Support Environmtent. Following

Seen reeac e that, a number of specific questions related to
Svn esaces from the University of each goal were developed. The goals and the

Maryland* and from General Electric have joined questions relevant to each are listed in the
in an eighteen-month collaborative effort to Appendix.
study this problem. Part of the effort has in-
volved collecting measurements from an on-going
Ada software development project. Our general Three methods of data collection were chosen to
approach has been to collect a great deal of answer the questions associated with the goals.
information, to try to evaluate the different First, eight different data collection forms
types of measures, and to select those that were adapted f rom those developed by Victor
appear most useful. This paper will describe Basili and Marvin Zelkowitz for the NASA Soft-
the software project selected, the data collec- ware Engineering Laboratory.il) The forms were
tion effort and the candidate metrics that are desig~ned to be completed by the members of the
being considered. develooment team. The data collected on the

forms provides a complete record of activities
during the development process. The forms focus

*Members of the University of Maryland team are: on three types of data: effort, changes and
Victor Basili, John Gannon, Elizabeth Katz, and errors. These data will be discussed in detail
Marvin Zelkowitz. below.

(itstrIc

I 3 4i j1

* ~Second, an on-line procedure was developed for metrics for the APSE. Some of these metrics may
recording all versions of the design and the be useful in any software development environ-
code for later analysis by a YACC-generated ment, regardless of the design or implementation
processor. The processor provides a static view language used; others may be useful only for the
of the system by counting such data as the types Ada env ironment. Some metrics may provide
of Ada features used in each module, the data enough information to make other measures
exchanged between modules, etc. superfl uous. Two or more may reflect the same

information, but the data for one may be more
Third, the members of the prograimming team were difficult to collect. Some metrics may not
interviewed after training and at the end of contribute useful information at all . Thus we
each major phase of the development cycle to are comparing the metrics in order to discard
determine what new concepts they had learned, those that are not needed and to select a group
what were their attitudes about Ada, and how that will be truly useful.

thoe atitdeswer chngig.Data collection for this project has centered

In order to assure the quality of the data largely on two kinds of metrics, those deal ing
collected, the research team was diligent about with the software development process itself and
cross-checking the data for accuracy. The those dealing with the evolving product. Data
results of this activity were surprising to collection for the process metrics include: a)

researchers who had previously been involved in the effort expended, b) the changes to the
laboratory experiments. Techniques for design or code, and c) the errors that occur.
controlled experimentation are well developed,
and on-line programming experiments can be used For effort data, we collected the number of
to collect extremely precise time and error hours spent in various activities during the

.. data. However, in this field study, we found a life cycle. We also recorded the names of the
very different situation. Athough the program- modules and the types of activity (e. g., design
ming team understood the necessity for recording review or code reading) on which the time was

* the information precisely, there were wide expended. Because the human effort required to
variations in estimates. For example, one complete a project generally accounts for its
Programmer recorded a time of one hour for a largest single cost, effort data can be used to
design walkthrough and another recorded a time predict costs of future projects with similar
of three hours for the same walkthrough, Parameters (e. g., size and application).
although each person attended the whole Effort metrics are also useful for measuring
session. An inquiry revealed that the walk- Productivity and for assessing the impact of new
through on the design had been completed in an tools and techniques on productivity.
hour, but the group had remained together for an
additional two hours in order to discuss Every software development will undergo changes
methodology. Thus it was necessary to provide to Previous documents (whether anticipated or
constant monitoring of the data collIec ti on not). Some development techniques, such as
effort at the site of the progranmming activity. iterative enhancement, specifically assume that
In fact, all team meetings were attended by at continual evolution is desirable. Others assume
least one member of the research team. there will be a single pass through each phase

with any further _ianges being carefully
Collecting data with an on-line system would controlled. In either case, information about
have relieved some of the problems we found with changes provides important insights into the
manual data collection procedures. Incomplete p roj ec t. Data collected about a change to our
or inconsistent data values would have been more system included: the reason for the change, the
readily apparent. Further, on-line entry of time scent making the change, additional docu-
data might have seemed more palatable to the ments examined during the change, and changes to
programuiinq team. The extensive data collection other documents because of the change. These
effort done here interfered to some degree with data help determine the costs of various types
their progress of the project: filling out the of changes and assist in oredicting the modifia-
forms required time and effort. On-line data bility of the system. Change data are also
collection might have been less apparent to the useful for evaluating whether the development
programmning team, even though the same data methodology is successful for the environment.
would have been obtained. Finally, such a For example, large numbers of major changes
system would eliminate the need for later entry might indicate tha t a different development
of the data into the data base. In our selec- methodology should be used. In such a case, an
tion of metrics, we are considering the ease incremental development approach might be bene-
with which the data for the metrics can be ficial in establishing the desirable features of
collected and the degree to which it can be the system. (2)

obtaned nobtusivly.Data about errors included a description of the
A large number of candidate metrics have been error, the activities used to detect the error,
defined and investigated. All of those that the time at which the error entered the system,
have a possibility of being useful are being and an evaluation of whether the error was
evaluated. Area C, as shown in the Appendix, related to the Ada programming language. These
shows questions specifically related to defining data Provide information about the quality of

-Av tIi 'i/or
IL, t Spe cial1

I 4NI

X J.I
.r %..

the product. We can also use error data to loqical complexity.(S) The theory is that a
improve our methodology. If we know which types program with many decisions is psychologically
of errors are more difficult to correct, we can complex: the more decisions, the more difficult
put an emphasis on trying to locate and correct a program is to understand and modify. One
those types of errors during walkthroughs or exception to this is a case statement where
other reviews of the product. For errors there is one path for eacF R several similar
related to the use of Ada, error data can be choices. McCabe suggests limiting v(G) to 10
used to determine where emphasis is needed in for any module except where v(G) is l'Tfated by
future training courses. a large case statement.

Product metrics are the other major type of
metric we have been examining. They deal with The current method of counting v(G) may not be
the characteristics of the software itself and sufficient for the Ada language._-a's explicit
can be divided into two categories: static and structures for exception handling alter the
dynamic. Static metrics can be collected from control flow normally found in structured
the software at any point in its development, languages. Additional paths can be explicitly
Dynamic metrics are run-time measures. There generated to handle situations that would cause
are a myriad of measurements that can be faulty execution in other languages. For
collected for both categories; only a few example, in some other languages, an attempt to
representative ones are discussed below, read past an end-of-file marker would produce an

error message and would terminate the job
Static metrics are useful for determining the stream. In Ada it is possible to specify the
complexity and quality of the code. Collecting means to handle this possibility and to continue
such metrics at several phases of the life cycle orocessing. This exception handling, however,
provides a view of the way in which the system alters the normal flow of control of the
changes across the phases. Static metrics can program, and it is necessary to consider alter-
be subdivided into three types: size, control natives for calculating v(G). One method would

0 and data metrics. Size metrics are indicators ignore the potential ocdurrence of exceptions.
of the volume of a product and the amount of A second method would account for all possible
work performed. They correlate well with effort paths of execution as the result of the occur-
and are used for estimating costs, comparing rence of an exception. The first alternative
products and measuring productivity.(3) Lines alters the premise that all basic paths through
of code are frequently used to measure size. the module are being counted and tested. The
However, there are alternate ways to count lines second alternative is theoretically more
of code. Comment lines may be included or appealing, but it would greatly increase the
omitted, depending on the use of the metric. If number of paths and would thus make testing very
we are measuring productivity, we probably want difficult.
to include both code and comment lines.
However, the self-documenting features of the Data metrics analyze the organization of the
Ada syntax may produce a smaller ratio of data structures within and between modules in an
commlent lines to code lines than is usually attempt to measure the ease with which they can
considered good programming practice in other be understood and modified. Data metrics of
languages. Further difficulties may arise when interest include the number of average live
computing the size of a system which incorpor- variables per statement, the percentage of
ates previously written components or is a global variables, and the number of programmer-
modification of a previously developed system. defined types. Some data metrics, such as the
Should productivity measures include only new information flow metrics of Henry and Kafura,
development work or should they reflect all of focus on the interconnections between system
the code that is delivered? Certain features of components.(6, 71 Myers has indicated that
the Ada language (I. e., packages, generics) interfaces are important because many serious,
will make possible large libraries of reusable hard-to-find errors in systems result from a
components that can be incorporated into a new lack of understanding of module inter-
system much the way in which circuits are now dependencies and from changes made to global
constructed with off-the-shelf chips. This new data areas.(8)
trend in software design, as well as the self-
documenting capabilities of the syntax, will More work is also needed in the area of data
necessitate fresh approaches to size measures metrics for Ada. Is the density of data flow
which are meaningful for Ada. across modules as proposed by Henry and Kafura a

useful metric for the Ada language? The Ada
Control flow metrics measure the complexity of a block structure, visibility rules and packaging
product. McCabe's v(G) is a count of the features all affect the way in which data is
number of basic controT path segments in a apportioned and the degree to which data is or
computer program.(4) This value depends on the is not visible at various locations in the
number of decision nodes and the branches code. Thus there is a need to define how to
emanating from those nodes. V(G) was originally measure the number of global and local data
developed as part of a strflg for testing structures and how to measure the quality with
software. However, it has been suggested that which the data structures are encapsulated in
v(G) is also useful as a measure of psycho- packaqes. These measures should be helpful in

~%

iV

"--,-,.,..............'.' '. '-. ,.'':..-." ."- . . .:.:;, -.. '., ,.. -'.. , .- :..-'j...;-.',:', 'V,'%' ...'.- .. ,,.:,'.'.Q

determlninq whether the encapsulation makes the 31 Are certain features of Ada or certain
best use of Ada' s features for producing types of errors associated with
maintainable, reuseable software. particular programmers? Why?

41 Do certain programmers have problems
Dynamic metrics provide another method for with certain aspects of the language?

* measuring the software product. Dynamic 5) Do programmers want to use features

measures can be divided into execution and test available in other languages that are not
coeaes merics. b evide oxecution s ae usel 6 available in Ada?
.coverage metrics. Excution metrics are useful 6) Are some features of the language

*.. for tuning a system to make it run efficiently. overused. used incorrectly, or used
Execution metrics include the number of times inappropriately in the progranmers
each statement is executed and the CPU time used. enthusiasm to use what they have

learned?
Test coverage metrics help determine the degree 7) Do people with no previous high level
and qual ity of the testing that has been done. language experience have more or fewer
McCabe's metric has already been discussed. problems with Ada than people with
Other candidate test coverage metrics include high level language experience?
the number of statements executed and the number
of branches executed. Because Ada has mecha- Area B: Goals relating to Ada as a design and
nisms for concurrent processing, metrics are implementation language
needed to measure tasking features and usage. Goal Bi: Characterize theerrors made.
Further, concurrent processing presents oppor- Ga How were the errors fude.• -- tuttts fr bth taratin ad dadlck;1) How were the errors found? ie.g.. design
tunities for bo th starvation and deadlock; review, inspection of output, etc.
methods are needed for predicting the 2) What were the non.Ada causes of the
possibility of these occurrences during the errors? le.g.. requrements misiner-
testing phase of the life cycle. nrert. mistake in computation. etc.'

3) What features of Ada are commonly
The analysis of the data from this project and involved in errors?

I the subsequent selection of a suggested set of 41 Are there features of Ada that cause
metrics for an Ada environment is currently problems when they are used together?
underway. The systematic approach to the 5) Are errors attributed to confusion with
goal-drioen data collection effort will provide another Language? to a lack of
a beginning methodology for subsequent efforts understanding of Ada? to a lack of
for monitoring software projects. The metrics experience with a feature?

selected will be useful for all of the differing 61 Are the errors made when using Ada as
needs of those assciated with an Ada system a design language different than those
nes omade when coding?
throughout the life cycle. If w can automate 71 Where was the information found that
and insert a common set of metrics into the was needed to correct the error? e.g..
APSE, data collection may become an integral Ada Reference Manual. another
part of software methodology, and comparisons programmer. etc.I
across Ada projects of all types will become 81 Is the error characteristic of the feature
feasible. Further, quantitative indices of the or of the particular application it
P progress of a project will be available for involved?
managers, procurement officers, designers and
others with a need for such information. Goal B2: Determine whether certain aspects of

Ada are difficult to use for certain
applications.

1" A) Are there certain aspects of Ada that do
APPENDIX not apply to this type of project?

2) Are there techniques usually used for
this type of application that are difficult

Area A: Generic goals for any software to implement in Ada?
development project Goal B3: Determine which aspects of Ads

Goal Al: Characterize the effort in the project. contribute positively to the design and
Ii How was the effort distributed over the programming environment.

phases of the project? I Are errors easy to find? to correct.
2) How was the effort for the project 21 Is there a large amount of parallel

distributed over time? development once the interfaces are
3) How was the effort distributed across defined?

different functions in the software? 31 How effective is Ada in reducing
41 How are the error distributions similar interface errors? producing software

to or different from other comparable that is easy to change? reducing the
software developments? development effort, especially in

Goal A2: Characterize the changes. realtime problems?
I) How are the changes to the system Goal B4: Deterrmne which combinations of Ada s

distributed over the software develop- features are naturally used together.
ment cycle? II How fully is the language used?

21 How is the time for handling a change
distributed? How long does it take to
design and implement the change?1i

L *..

to ORa-I NM I"

2) Are there certain features of Ada that 3) Which static metrics can be appliedare avoided because they are difficult to throughout the design and code
learn? difficult to use? poorly phases. Which cannot?implemented? error prone?implmenederro prne?4) Which static metrics help predictGoal BS: Determine the effect of using Ada as a 4) Wi hai r elp reict
PDL. n-time behavior e.g.. reliabiiitv.

li Does Ada PDL allow sufficient abstrac- etc.)?tion at the early stages of design? 5) Which static metrics can be
2) Is the language really being used as a measured most easilv'

design language?
3) Does the use of Ada PDL cause apreoccupation with syntax during the Goal C I. I: Develop a set of size metrics for

design stage? the APSE
4) What is the expansion of Ada PDL to

code? I) What size metrics best predict effort") Does Ada PDL guide the design of the 2) What serves as a useful size metric
project or are portions of the system (e.g., lines of code, modules i n Ada'primarily other language programs 3) .What co e stateent Ad
written in Ada synta? 3) What constitutes a statement i6) Is there an adequate combination of Ada?
features of Ada for use as a PDL? 4) How should an executable statement71 Are the most expensive errors found be defined in Ada?
while using a particular set of features 5) What features of Ada should be
of Ada as a PDL? grouped when counting the number8) Are errors uncovered at the design stage of times certain features are used?
that ordinarily would have been o w se f is Hate s are
uncovered during coding because of the 6) How useful is Hasteads sotts areuse of Ada PDL? science approach with Ada?

9} What percentage of the interface errors"* are uncovered during the design stage?C a c d gGoal C1.2: Develop a set of control metrics
Goal B6: Characterize the programmers and for the APSE

associate their background with their
use of Ade 1) How can tasking and exceptions oe

i1 What are the programmers' opinions of integrated into the control metrics?
Ada before they begin this project? 2) How useful is M(cCabes cvclomatmcduring? afterward? complexity measure? How does the

2) What is each programmer's background cvciomacic complexity compare with
with other languages? chciometi comp ex t o

3) Is there a relationship between how far 3) How useful are measures of nestn
into development the change was needed
and how much effort was spent on the complexity and depth?
change? How many sections it affected?

4) What kind of changes were made? (e.g..
error correction, planned enhancement. Goal C 1.3: Develop a set of data metricsetc.) for the APSE

5) How many components are involved in
the typical change?

6) How many changes are caused by a 1 How can the complexity of data
previous change? structures be measured?71 How was the need for change 2) What ifluences the number of
determined? programmer defined types?81 How many and what kind of interface 3) How does the use of Ada influencechanges need to be made? the number of inputs to and outputs

from a module?
Area C: Goals Relating to Metrics for 4) How does Ada influence the use ot

the APSE global data?
5) How does Ehe use of modules affect

the treatment of data within a
Goal Cl: Select a set of static (size,cotrlan at)mercsfr)program?

control and data) metrics for 6) How should the span of a variablethe APSE be measured? Is there a use fbr the
1 Ar thre dffeence inthespan information?

Is Are there differences in the 7 What do the data bindings suggesti implications of various counting about the structure of the system'
measures? Are some measures more 8) Does the densitv of the data ,Iow
useful than others? across modules provide useful

*' . 2) Do certain program measures feedback about the structure of the
provide enough information to make system? i.e.. are information tlow
other measures superfluous' metrics (Henrv & Kafura) useful'

4,

'"'

,:;% ..;',.;.. .; .- , .. ,

Goal C2: Select a set of dynamic (test Acknowledgements
coverage and execution)
metrics for the APSE The categorization of the metrics used on this

project was developed by Victor Basili and other

Goal C2.1: Develop a set of test coverage members of the University of Maryland team. The
metrics for the APSE software development methodology employed

benefited from their direction. The authors are

1 D"otfl gm u fgrateful to Victor Basili, John Gannon,
1)-,. Do aElizabeth Katz and Marvin Zelkowitz for their

test coverage lead to a useful strategy help. This research program is monitored by the
for testing: number of statements Office of Naval Research (ONR) under contract
executed? number of decisions #NOM14i-82-K-0225 to the University of Maryland
executed, or number of independent with funding from ONR and the Ada Joint Program
paths executed? Office. The views expressed in this paper,

2) Can these measures be extended to however, are not necessarily those of the Office
provide test coverage for concurrent of Naval Research, the Ada Joint Program Office
processing or will new measures need or the Department of Defense.
to be developed? Are there measures
to detect starvation, potential
deadlocks, etc.?

3) Are there other features of Ada (e.g.,
exception handling) that require new REFERENCES
measures for test coverage? What are
those measures? [1] Basili, V. R. and Zelkowitz, M. V.,

Analyzing medium-scale software development,
in Proceedings of the 3rd International

Conference on Software Engineering (1978)
* Goal C2.2: Develop a set of execution 116-123.

metrics for the APSE [2] Basili, V. R., Changes and errors as
measures of software development, in Basili,

1) What are useful execution metrics? V. R. (ed.), Models and Metrics for Software
S. 2) What additional information do Management and Engineering, Computer Society

execution statistics provide beyond Press (1980) 62-64.
what can be gained from a static [3] Basili, V. R., Product metrics, in Basili,

view of the system? V. R. (ed.), Ibid., 214-217.
3) Are there measures of execution t4, t4cCabe, T., A complexity measure, IEEE

complexity? Transactions on Software Engineering, 2
4) Are certain Ada features or (1976) 308-320.

combinations of features expanded [51 Curtis, B., Sheppard, S. B., and Milliman,
into very fast or verv slow code? P. Third time charm: stronger prediction of

programmer performance by software

Goal C3: Develop a subjective evaluation complexity metrics, in Proceedings of the

system for evaluating some 4th International Conference on Software

program and design features Engineering (1979) 356-360.

that are not easily or [6] Henry, S. and Kafura, 0., Software structure

practically measured in other metrics based on information flow, IEEE
Sransactions on Software Engineering 5ways (1981) 510-518.

Can a diverse set ofexperts Ada. [71 Kafura, D. and Henry, S., Software quality
)pcan etology metrics based on interconnectivity, The

applications, and methodology Journal of Systems and Software 2 (1981)
experts) accurately evaluate the 121-133.
subjective aspects of the project? (8 Myers, G. J., Software Reliability:

2) How well do the results of these Principles and Practice (Wiley- Interscience,
evaluations correlate with results New York, 1976).from objective measures?

3) How well do these evaluations

correlate with the opinions of the
development team?

+) Can we conclude anything from the
subjective results?

,- I -

1.; im .RUi.M, flXNT UIc .
: ,

s'W W .. . W S'W i : .. .'VT rrc '. -r ' , :rw W -- w -• -- -'z -

A"

-:A

- D

A. ° " " D % ' . " o% q , ° o% ',,. . . " , ,% .% ' '," o "., . o 1

